翻訳と辞書
Words near each other
・ Kurd Maverick
・ Kurd Mehmed Pasha
・ Kurd Mountains
・ Kurd Ovshari
・ Kurd Peters
・ Kurd von Mosengeil
・ Kurd von Schlözer
・ Kurd von Schöning
・ Kurd, Hungary
・ Kurd-Laßwitz-Preis
・ Kurd1 Channel
・ Kurda
・ Kurdaitcha
・ Kurdalægon
・ Kurani, Iran
Kuranishi structure
・ Kurankhed
・ Kuranko language
・ Kuranko people
・ Kurankoppa
・ Kurankyi-Taylor
・ Kuranlu
・ Kuranosuke
・ Kuranosuke Sasaki
・ Kurantbanken
・ Kuranty
・ Kuranui College
・ Kuranów
・ Kurao Hiroshima
・ Kuraokami


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kuranishi structure : ウィキペディア英語版
Kuranishi structure

In mathematics, especially in topology, a Kuranishi structure is a smooth analogue of scheme structure. If a topological space is endowed with a Kuranishi structure, then locally it can be identified with the zero set of a smooth map (f_1, \ldots, f_k): ^ \to ^k. Kuranishi structure was introduced by Japanese mathematicians Kenji Fukaya and Kaoru Ono in the study of Gromov–Witten invariants in symplectic geometry.〔Fukaya, K. and Ono, K., "Arnold Conjecture and Gromov–Witten Invariant", ''Topology'' 38 (1999), no. 5, 933–1048〕
==Definition==

Let X be a compact metrizable topological space. Let p \in X be a point. A Kuranishi neighborhood of p (of dimension k ) is a 5-tuple
::: K_p = (U_p, E_p, S_p, \psi_p, F_p)
where
* U_p is a smooth orbifold;
* E_p \to is a smooth orbifold vector bundle;
* S_p: U_p \to E_p is a smooth section;
* \psi_p: S_p^(0) \to X is a continuous map and is homeomorphic onto its image F_p \subset X .
They should satisfy that \dim U_p - \operatorname E_p = k .
If p, q \in X and K_p = (U_p, E_p, S_p, \psi_p, F_p) , K_q = (U_q, E_q, S_q, \psi_q, F_q) are their Kuranishi neighborhoods respectively, then a coordinate change from K_q to K_p is a triple
::: T_ = ( U_, \phi_, \hat\phi_)
where
* U_ \subset U_q is an open sub-orbifold;
* \phi_: U_ \to U_p is an orbifold embedding;
* \hat\phi_: E_q|_ .
In addition, they must satisfy the compatibility condition:
* S_p \circ \phi_ = \hat\phi_ \circ S_q|_|_} = \psi_q|_} .
A Kuranishi structure on X of dimension k is a collection
::: \Big( \,\ \, \phi_, \hat\phi_ ) \ |\ p \in X,\ q \in F_p\} \Big)
where
* K_p is a Kuranishi neighborhood of p of dimension k ;
* T_ is a coordinate change from K_q to K_p .
In addition, the coordinate changes must satisfy the cocycle condition, namely, whenever q\in F_p,\ r \in F_q , we require that
::: \phi_ \circ \phi_ = \phi_,\ \hat\phi_ \circ \hat\phi_ = \hat\phi_
over the regions where both sides are defined.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kuranishi structure」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.